Nonnegative Matrix and Tensor Factorizat

Kort om boken

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Deco…

Oppdag mer

Velg tagger...
Spar {0}
Spar {0} som ARK-VENN
{0} til nettpris
med Klikk&Hent
Format/språk
Format
Forklaring av formater
  • Innbundet

    Bok med hardt omslag.

  • Pocket

    Heftet bok med mykt omslag.

  • Kartonert

    Bok med tykke, stive sider.

  • E-Bok

    Digitalt format. E-bok kan leses i ARK-appen eller på Kindle. Bøkene kan også lastes ned fra Din side.

  • Nedlastbar lydbok

    Digitalt format. Nedlastbar lydbok kan lyttes til i ARK-appen. Bøkene kan også lastes ned fra Din side.

  • Digikort lydbok

    Lydbok på digikort. Krever Digispiller.

  • Compact Disc

    Lydbok eller musikk på CD. Krever CD-spiller eller annen kompatibel avspiller.

  • Vinyl

    Vinylplate. Krever platespiller.

  • DVD

    DVD-film. Krever DVD-spiller eller annen kompatibel avspiller.

  • Blu-ray

    Blu-ray-film. Krever Blu-ray-spiller eller annen kompatibel avspiller.

   Fri frakt - på kjøp over 249,-
   Alltid bytterett - Norges beste. Bytt uten kvittering.

    Om Nonnegative Matrix and Tensor Factorizat

    This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.

    Kundevurderinger

    Totalvurdering: 

    Gi din vurdering: 
    Totalvurdering: 

    Detaljer

    Format
    E-Bok
    Kopisperre
    Teknisk DRM
    Filformat
    PDF
    Utgivelsesår
    2009
    Forlag
    Wiley
    Språk
    Engelsk
    ISBN
    9780470747285
    Sider
    500

    Anbefalt