Large Sieve and its Applications
Del av serien
Kort om boken
E-Bok
Forklaring av formater
Innbundet
Bok med hardt omslag.
Pocket
Heftet bok med mykt omslag.
Kartonert
Bok med tykke, stive sider.
E-Bok
Digitalt format. E-bok kan leses i ARK-appen eller på Kindle. Bøkene kan også lastes ned fra Din side.
Nedlastbar lydbok
Digitalt format. Nedlastbar lydbok kan lyttes til i ARK-appen. Bøkene kan også lastes ned fra Din side.
Digikort lydbok
Lydbok på digikort. Krever Digispiller.
Compact Disc
Lydbok eller musikk på CD. Krever CD-spiller eller annen kompatibel avspiller.
Vinyl
Vinylplate. Krever platespiller.
DVD
DVD-film. Krever DVD-spiller eller annen kompatibel avspiller.
Blu-ray
Blu-ray-film. Krever Blu-ray-spiller eller annen kompatibel avspiller.
Om Large Sieve and its Applications
Among the modern methods used to study prime numbers, the 'sieve' has been one of the most efficient. Originally conceived by Linnik in 1941, the 'large sieve' has developed extensively since the 1960s, with a recent realisation that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups.