Resistance Forms, Quasisymmetric Maps an

Forfatter
Spar {0}
Spar {0} som ARK-VENN
{0} til nettpris
med Klikk&Hent
Format/språk
   Klikk og hent - få varen innen 2 timer*
   Alltid bytterett - Norges beste. Bytt uten kvittering.
* Gjelder varer på lager i butikk

Kort om boken

Assume that there is some analytic structure, a differential equation or a stochastic process for example, on a metric space. To describe asymptotic behaviors of analytic objects, the original metric of the space may not be the best one. Every now a…

Oppdag mer

Velg tagger...

    Om Resistance Forms

    Assume that there is some analytic structure, a differential equation or a stochastic process for example, on a metric space. To describe asymptotic behaviors of analytic objects, the original metric of the space may not be the best one. Every now and then one can construct a better metric which is somehow "intrinsic" with respect to the analytic structure and under which asymptotic behaviors of the analytic objects have nice expressions. The problem is when and how one can find such a metric. In this paper, the author considers the above problem in the case of stochastic processes associated with Dirichlet forms derived from resistance forms. The author's main concerns are the following two problems: (I) When and how to find a metric which is suitable for describing asymptotic behaviors of the heat kernels associated with such processes. (II) What kind of requirement for jumps of a process is necessary to ensure good asymptotic behaviors of the heat kernels associated with such processes.

    Kundevurderinger

    Totalvurdering: 

    Gi din vurdering: 
    Totalvurdering: 

    Detaljer

    Format
    E-Bok
    Kopisperre
    Teknisk DRM
    Filformat
    PDF
    Forlag
    American Mathematical Society
    Språk
    Engelsk
    ISBN
    9780821885239
    Sider
    132

    Anbefalt

    Nettleseren din er utdatert

    Mye funksjonalitet på ark.no støttes ikke lenger i Internet Explorer. Vennligst bruk en nyere nettleser.