Lyapunov Functionals and Stability of St

Forfatter

Kort om boken

Hereditary systems (or systems with either delay or after-effects) are widely used to model processes in physics, mechanics, control, economics and biology. An important element in their study is their stability. Stability conditions for difference …

Oppdag mer

Velg tagger...
Spar {0}
Spar {0} som ARK-VENN
{0} til nettpris
med Klikk&Hent
Format/språk
Format
Forklaring av formater
  • Innbundet

    Bok med hardt omslag.

  • Pocket

    Heftet bok med mykt omslag.

  • Kartonert

    Bok med tykke, stive sider.

  • E-Bok

    Digitalt format. E-bok kan leses i ARK-appen eller på Kindle. Bøkene kan også lastes ned fra Din side.

  • Nedlastbar lydbok

    Digitalt format. Nedlastbar lydbok kan lyttes til i ARK-appen. Bøkene kan også lastes ned fra Din side.

  • Digikort lydbok

    Lydbok på digikort. Krever Digispiller.

  • Compact Disc

    Lydbok eller musikk på CD. Krever CD-spiller eller annen kompatibel avspiller.

  • Vinyl

    Vinylplate. Krever platespiller.

  • DVD

    DVD-film. Krever DVD-spiller eller annen kompatibel avspiller.

  • Blu-ray

    Blu-ray-film. Krever Blu-ray-spiller eller annen kompatibel avspiller.

   Fri frakt - på kjøp over 249,-
   Alltid bytterett - Norges beste. Bytt uten kvittering.

    Om Lyapunov Functionals and Stability of St

    Hereditary systems (or systems with either delay or after-effects) are widely used to model processes in physics, mechanics, control, economics and biology. An important element in their study is their stability. Stability conditions for difference equations with delay can be obtained using a Lyapunov functional. Lyapunov Functionals and Stability of Stochastic Difference Equations describes a general method of Lyapunov functional construction to investigate the stability of discrete- and continuous- time stochastic Volterra difference equations. The method allows the investigation of the degree to which the stability properties of differential equations are preserved in their difference analogues. The text is self-contained, beginning with basic definitions and the mathematical fundamentals of Lyapunov functional construction and moving on from particular to general stability results for stochastic difference equations with constant coefficients. Results are then discussed for stochastic difference equations of linear, nonlinear, delayed, discrete and continuous types. Examples are drawn from a variety of physical systems including inverted pendulum control, study of epidemic development, Nicholson's blowflies equation and predator-prey relationships. Lyapunov Functionals and Stability of Stochastic Difference Equations is primarily addressed to experts in stability theory but will also be of use in the work of pure and computational mathematicians and researchers using the ideas of optimal control to study economic, mechanical and biological systems.

    Kundevurderinger

    Totalvurdering: 

    Gi din vurdering: 
    Totalvurdering: 

    Detaljer

    Format
    E-Bok
    Kopisperre
    Teknisk DRM
    Filformat
    PDF
    Utgivelsesår
    2011
    Forlag
    Springer London
    Språk
    Engelsk
    ISBN
    9780857296856

    Anbefalt