Survival and Event History Analysis

Kort om boken

Time-to-event data are ubiquitous in fields such as medicine, biology, demography, sociology, economics and reliability theory. Recently, a need to analyze more complex event histories has emerged. Examples are individuals that move among several st…

Oppdag mer

Velg tagger...
Spar {0}
Spar {0} som ARK-VENN
{0} til nettpris
med Klikk&Hent
Format/språk
Format
Forklaring av formater
  • Innbundet

    Bok med hardt omslag.

  • Pocket

    Heftet bok med mykt omslag.

  • Kartonert

    Bok med tykke, stive sider.

  • E-Bok

    Digitalt format. E-bok kan leses i ARK-appen eller på Kindle. Bøkene kan også lastes ned fra Din side.

  • Nedlastbar lydbok

    Digitalt format. Nedlastbar lydbok kan lyttes til i ARK-appen. Bøkene kan også lastes ned fra Din side.

  • Digikort lydbok

    Lydbok på digikort. Krever Digispiller.

  • Compact Disc

    Lydbok eller musikk på CD. Krever CD-spiller eller annen kompatibel avspiller.

  • Vinyl

    Vinylplate. Krever platespiller.

  • DVD

    DVD-film. Krever DVD-spiller eller annen kompatibel avspiller.

  • Blu-ray

    Blu-ray-film. Krever Blu-ray-spiller eller annen kompatibel avspiller.

   Fri frakt - på kjøp over 249,-
   Alltid bytterett - Norges beste. Bytt uten kvittering.

    Om Survival and Event History Analysis

    Time-to-event data are ubiquitous in fields such as medicine, biology, demography, sociology, economics and reliability theory. Recently, a need to analyze more complex event histories has emerged. Examples are individuals that move among several states, frailty that makes some units fail before others, internal time-dependent covariates, and the estimation of causal effects from observational data.The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data.The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously.To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics.

    Kundevurderinger

    Totalvurdering: 

    Gi din vurdering: 
    Totalvurdering: 

    Detaljer

    Format
    E-Bok
    Kopisperre
    Teknisk DRM
    Filformat
    PDF
    Utgivelsesår
    2008
    Forlag
    Springer New York
    Språk
    Engelsk
    ISBN
    9780387685601

    Anbefalt