Spinors in Hilbert Space

Forfatter
Spar {0}
Spar {0} som ARK-VENN
{0} til nettpris
med Klikk&Hent
Format/språk
   Klikk og hent - få varen innen 1 time*
   90 dagers åpent kjøp.
* Gjelder varer på lager i butikk

Kort om boken

1. Hilbert Space The words "Hilbert space" here will always denote what math- ematicians call a separable Hilbert space. It is composed of vectors each with a denumerable infinity of coordinates ql' q2' Q3, .... Usually the coordinates are consider…

Oppdag mer

Velg tagger...

    Om Spinors in Hilbert Space

    1. Hilbert Space The words "Hilbert space" here will always denote what math- ematicians call a separable Hilbert space. It is composed of vectors each with a denumerable infinity of coordinates ql' q2' Q3, .... Usually the coordinates are considered to be complex numbers and each vector has a squared length ~rIQrI2. This squared length must converge in order that the q's may specify a Hilbert vector. Let us express qr in terms of real and imaginary parts, qr = Xr + iYr' Then the squared length is l:.r(x; + y;). The x's and y's may be looked upon as the coordinates of a vector. It is again a Hilbert vector, but it is a real Hilbert vector, with only real coordinates. Thus a complex Hilbert vector uniquely determines a real Hilbert vector. The second vector has, at first sight, twice as many coordinates as the first one. But twice a denumerable in- finity is again a denumerable infinity, so the second vector has the same number of coordinates as the first. Thus a complex Hilbert vector is not a more general kind of quantity than a real one.

    Kundevurderinger

    Totalvurdering: 

    Gi din vurdering: 
    Totalvurdering: 

    Detaljer

    Format
    E-Bok
    Kopisperre
    Teknisk DRM
    Filformat
    PDF
    Utgivelsesår
    2012
    Forlag
    Springer US
    Språk
    Engelsk
    ISBN
    9781475700343

    Nettleseren din er utdatert

    Mye funksjonalitet på ark.no støttes ikke lenger i Internet Explorer. Vennligst bruk en nyere nettleser.