Lukk

# Spinors in Hilbert Space

Forfatter
Spar {0}
Spar {0} som ARK-VENN
{0} til nettpris
med Klikk&Hent
Format/språk Klikk og hent - få varen innen 1 time* 90 dagers åpent kjøp.
* Gjelder varer på lager i butikk

## Kort om boken

1. Hilbert Space The words "Hilbert space" here will always denote what math- ematicians call a separable Hilbert space. It is composed of vectors each with a denumerable infinity of coordinates ql' q2' Q3, .... Usually the coordinates are consider…

## Om Spinors in Hilbert Space

1. Hilbert Space The words "Hilbert space" here will always denote what math- ematicians call a separable Hilbert space. It is composed of vectors each with a denumerable infinity of coordinates ql' q2' Q3, .... Usually the coordinates are considered to be complex numbers and each vector has a squared length ~rIQrI2. This squared length must converge in order that the q's may specify a Hilbert vector. Let us express qr in terms of real and imaginary parts, qr = Xr + iYr' Then the squared length is l:.r(x; + y;). The x's and y's may be looked upon as the coordinates of a vector. It is again a Hilbert vector, but it is a real Hilbert vector, with only real coordinates. Thus a complex Hilbert vector uniquely determines a real Hilbert vector. The second vector has, at first sight, twice as many coordinates as the first one. But twice a denumerable in- finity is again a denumerable infinity, so the second vector has the same number of coordinates as the first. Thus a complex Hilbert vector is not a more general kind of quantity than a real one.

## Kundevurderinger

Totalvurdering:

Gi din vurdering:
Totalvurdering:

## Detaljer

Format
E-Bok
Kopisperre
Teknisk DRM
Filformat
PDF
Utgivelsesår
2012
Forlag
Springer US
Språk
Engelsk
ISBN
9781475700343

### Nettleseren din er utdatert

Mye funksjonalitet på ark.no støttes ikke lenger i Internet Explorer. Vennligst bruk en nyere nettleser.