Ranges of Bimodule Projections and Condi

Ranges of Bimodule Projections and Condi

Nettpris
699,-
Førpris 999,- Spar 300,-
E-Bok
E-bøkene legges i din ARK-leseapp. Bøkene kan også lastes ned fra Din side.
×
Logg deg inn for å gjennomføre dette kjøpet med ett klikk!

Etter at kjøpet er gjennomført vil boken være tilgjengelig på «din side» og i ARK-appen
Skriv anmeldelse
Format E-Bok
Kopisperre Teknisk DRM
Filformat PDF
Utgivelsesår 2014
Forlag Cambridge Scholars Publishing
Språk Engelsk
ISBN 9781443867863
Se flere detaljer  

Om Ranges of Bimodule Projections and Condi

The algebraic theory of corner subrings introduced by Lam (as an abstraction of the properties of Peirce corners eRe of a ring R associated with an idempotent e in R) is investigated here in the context of Banach and C*-algebras. We propose a general algebraic approach which includes the notion of ranges of (completely) contractive conditional expectations on C*-algebras and on ternary rings of operators, and we investigate when topological properties are consequences of the algebraic assumptions. For commutative C*-algebras we show that dense corners cannot be proper and that self-adjoint corners must be closed and always have closed complements (and may also have non-closed complements). For C*-algebras we show that Peirce corners and some more general corners are similar to self-adjoint corners. We show uniqueness of complements for certain classes of corners in general C*-algebras, and establish that a primitive C*-algebra must be prime if it has a prime Peirce corner. Further we consider corners in ternary rings of operators (TROs) and characterise corners of Hilbertian TROs as closed subspaces.


Kundevurderinger

ARKs anbefalinger

Det finnes ingen vurderinger av dette produktet. Skriv anmeldelse

Anbefalt


Tips en venn